
Powering Heap
Dan Robinson

Lead Engineer, Heap

• Joined as Heap's first hire in July, 2013

• Previously a backend engineer at Palantir

• Stanford '11 in Math and CS

whoami

Quick Overview
• What is Heap?

• Why is what we're building such a difficult data problem?

• How Heap is distributed.

• How we make subqueries fast.

• Partial indexes.

• UDFs in C.

• How distributed systems operations work.

bookHotelButton.addEventListener("click", function() {
 Analytics.track('Booked Hotel');
});

listingDetailPage.addEventListener("load", function() {
 Analytics.track('Viewed A Listing');
});

...

if (signInAttempt.isSuccessful) {
 Analytics.track('Signed In');
}

...

submitCreditCardButton.addEventListener("click", function() {
 Analytics.track('Entered Credit Card');
}

Analytics is fundamentally iterative.

 Capture everything that happens.

 Analyze the data retroactively.

Challenges

1. Capturing 10x to 100x as much data.
Will never want 95% of it.

Challenges

1. Capturing 10x to 100x as much data.
Will never want 95% of it.

2. Funnels, retention, behavioral cohorts,
grouping, filtering... can't pre-aggregate.

Challenges

1. Capturing 10x to 100x as much data.
Will never want 95% of it.

2. Funnels, retention, behavioral cohorts,
grouping, filtering... can't pre-aggregate.

3. Within a few minutes of real-time.

Data Scale

• Total dataset is ~60TB on disk and growing fast.

• Includes 80 billion events across 2 billion users.

• Of those events, 2.4 billion in the last week.

• Too big to scale up, need to scale out.

-- Distributed by (customer_id, user_id)
-- with the same shard boundaries.
CREATE TABLE users (
 customer_id BIGINT,
 user_id BIGINT,
 handle TEXT,
 properties JSONB NOT NULL DEFAULT '{}',
 PRIMARY KEY (customer_id, user_id)
);

-- Distributed by (customer_id, user_id)
-- with the same shard boundaries.
CREATE TABLE users (
 customer_id BIGINT,
 user_id BIGINT,
 handle TEXT,
 properties JSONB NOT NULL DEFAULT '{}',
 PRIMARY KEY (customer_id, user_id)
);

-- Distributed by (customer_id, user_id)
-- with the same shard boundaries.
CREATE TABLE events (
 customer_id BIGINT,
 user_id BIGINT,
 event_id BIGINT,
 time BIGINT NOT NULL,
 data JSONB NOT NULL,
 PRIMARY KEY (customer_id, user_id, event_id),
 FOREIGN KEY (customer_id, user_id)
 REFERENCES users (customer_id, user_id)
);

-- Distributed by (customer_id, user_id)
-- with the same shard boundaries.
CREATE TABLE users (
 customer_id BIGINT, <---------------------
 user_id BIGINT, <-------------------------
 handle TEXT,
 properties JSONB NOT NULL DEFAULT '{}',
 PRIMARY KEY (customer_id, user_id)
);

-- Distributed by (customer_id, user_id)
-- with the same shard boundaries.
CREATE TABLE events (
 customer_id BIGINT,
 user_id BIGINT,
 event_id BIGINT,
 time BIGINT NOT NULL,
 data JSONB NOT NULL,
 PRIMARY KEY (customer_id, user_id, event_id),
 FOREIGN KEY (customer_id, user_id)
 REFERENCES users (customer_id, user_id)
);

customer_id user_id handle TEXT properties JSONB

123 102756 jane_123 {email: 'jane_123@mail.com', 'ab_test_grp':'A'}

123 300732 {ab_test_grp: 'B'}

678 368868

499 628537 steve_is_cool {utm_campaign: 'twitter'}

customer_id user_id handle TEXT properties JSONB

123 102756 jane_123 {email: 'jane_123@mail.com', 'ab_test_grp':'A'}

123 300732 {ab_test_grp: 'B'}

678 628537

499 368868 steve_is_cool {utm_campaign: 'twitter'}

customer_id user_id handle TEXT properties JSONB

756 257186

756 120554

……

users_001

users_002

users

customer_id user_id handle TEXT properties JSONB

customer_id user_id handle TEXT properties JSONB

123 102756 jane_123 {email: 'jane_123@mail.com', 'ab_test_grp':'A'}

123 300732 {ab_test_grp: 'B'}

678 628537

499 368868 steve_is_cool {utm_campaign: 'twitter'}

customer_id user_id handle TEXT properties JSONB

756 257186

756 120554

……

users_001

users_002

users

SELECT COUNT(*)
FROM users
WHERE customer_id = 123
GROUP BY properties ->> 'ab_test_grp'

users_001

users

SELECT COUNT(*)
FROM users
WHERE customer_id = 123
GROUP BY properties ->> 'ab_test_grp'

SELECT COUNT(*)
FROM users_001
WHERE customer_id = 123
GROUP BY properties ->> 'ab_test_grp'

SELECT
 date_trunc('month', to_timestamp(time / 1000) AT TIME ZONE 'UTC') AS time_bucket,
 COUNT(*) AS value,

FROM (
 SELECT user_id, time, data
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1424437200000 AND 1429531200000 AND
 (data ->> 'type') = 'Log In'
) event_query

INNER JOIN (
 SELECT id
 FROM users
 WHERE
 customer_id = 135 AND
 (properties ->> 'Enterprise Code') IS NOT NULL
) user_filter_query ON (event_query.user_id = user_filter_query.user_id)

GROUP BY time_bucket;

SELECT
 date_trunc('month', to_timestamp(time / 1000) AT TIME ZONE 'UTC') AS time_bucket,
 COUNT(*) AS value,

FROM (
 SELECT user_id, time, data
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1424437200000 AND 1429531200000 AND
 (data ->> 'type') = 'Log In'
) event_query

INNER JOIN (
 SELECT id
 FROM users
 WHERE
 customer_id = 135 AND
 (properties ->> 'Enterprise Code') IS NOT NULL
) user_filter_query ON (event_query.user_id = user_filter_query.user_id)

GROUP BY time_bucket;

SELECT
 COUNT(*) AS value
 date_trunc('month', to_timestamp(time / 1000) AT TIME ZONE 'UTC') AS time_bucket,

FROM (
 SELECT user_id, time, data
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1424437200000 AND 1429531200000 AND
 (data ->> 'type') = 'Log In'
) event_query

INNER JOIN (
 SELECT id
 FROM users
 WHERE
 customer_id = 135 AND
 (properties ->> 'Enterprise Code') IS NOT NULL
) user_filter_query ON (event_query.user_id = user_filter_query.user_id)

GROUP BY time_bucket;

SELECT
 COUNT(*) AS value,
 date_trunc('day', to_timestamp(time / 1000) AT TIME ZONE 'UTC') AS time_bucket

FROM (
 SELECT user_id, time, data
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1424437200000 AND 1429531200000 AND
 (data ->> 'type') = 'Log In'
) event_query

INNER JOIN (
 SELECT id
 FROM users
 WHERE
 customer_id = 135 AND
 (properties ->> 'Enterprise Code') IS NOT NULL
) user_filter_query ON (event_query.user_id = user_filter_query.user_id)

GROUP BY time_bucket

Distributing With CitusDB
• Every customer gets a customer_id, every end

user gets a user_id.

• One big table of users, one big table of events.

• Shard both tables by (customer_id, user_id).

• CitusDB turns a vanilla PostgreSQL query,
potentially with joins, into many local joins.

SELECT
 COUNT(*) AS value,
 date_trunc('month', to_timestamp(time / 1000) AT TIME ZONE 'UTC') AS time_bucket

FROM (
 SELECT user_id, time, data
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1424437200000 AND 1429531200000 AND
 (data ->> 'type') = 'Log In'
) event_query

INNER JOIN (
 SELECT id
 FROM users
 WHERE
 customer_id = 135 AND
 (properties ->> 'Enterprise Code') IS NOT NULL
) user_filter_query ON (event_query.user_id = user_filter_query.user_id)

GROUP BY time_bucket

SELECT
 COUNT(*) AS value,
 date_trunc('month', to_timestamp(time / 1000) AT TIME ZONE 'UTC') AS time_bucket

FROM (
 SELECT user_id, time, data
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1424437200000 AND 1429531200000 AND
 (data ->> 'path') = '/checkout' AND
 (data ->> 'action') = 'click' AND
 (data ->> 'css_hierarchy') LIKE '%div.checkout_modal%a.btn' AND
 (data ->> 'target_text') = 'Confirm Order'
) event_query

GROUP BY time_bucket

CREATE INDEX confirmed_checkout_idx ON events (time)
 WHERE
 (data ->> 'path') = '/checkout' AND
 (data ->> 'action') = 'click' AND
 (data ->> 'css_hierarchy') LIKE '%div.checkout_modal%a.btn' AND
 (data ->> 'target_text') = 'Confirm Order'

CREATE INDEX confirmed_checkout_idx ON events (time)
 WHERE
 (data ->> 'path') = '/checkout' AND
 (data ->> 'action') = 'click' AND
 (data ->> 'css_hierarchy') LIKE '%div.checkout_modal%a.btn' AND
 (data ->> 'target_text') = 'Confirm Order'

...

SELECT
 COUNT(*) AS value,
 date_trunc('month', to_timestamp(time / 1000) AT TIME ZONE 'UTC') AS time_bucket
FROM events
WHERE
 customer_id = 135 AND
 time BETWEEN 1424437200000 AND 1429531200000 AND
 (data ->> 'path') = '/checkout' AND
 (data ->> 'action') = 'click' AND
 (data ->> 'css_hierarchy') LIKE '%div.checkout_modal%a.btn' AND
 (data ->> 'target_text') = 'Confirm Order'
GROUP BY time_bucket

Partial Index Strategy
• Every event definition is a filter on the events table.

• Under the hood, Heap maintains one partial index for
each of those filters.

• The variety of events that Heap captures is massive,
so any individual event definition is very selective.

• Fits perfectly into our "retroactive" analytics framework.

'1' '2' '3'

funnel_events(events INT[], num_steps INT) RETURNS INT[]
-- Returns an array of size num_steps, with 1s corresponding to
-- steps completed in the funnel, 0s in the other positions.

> SELECT funnel_events('{1, 2, 3}', 3);
{1, 1, 1}

> SELECT funnel_events('{1, 3, 2, 2, 2}', 3);
{1, 1, 0}

> SELECT funnel_events('{1}', 3);
{1, 0, 0}

 SELECT array_agg(event ORDER BY time) AS events
 FROM (
 (
 SELECT customer_id, user_id, 1 AS event, time
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1412319600000 AND 1412924400000 AND
 (data ->> 'action') = 'view_page' AND
 (data ->> 'path') = '/item_detail'
)
 UNION
 (
 SELECT customer_id, user_id, 2 AS event, time
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1412319600000 AND 1412924400000 AND
 (data ->> 'action') = 'click' AND
 (data ->> 'css_hierarchy') LIKE '%div.checkout_modal%a.btn' AND
 (data ->> 'target_text') = 'Confirm Order'
)
) t
 GROUP BY customer_id, user_id

 ----------------> {1, 1, 2}
 {1, 1, 1, 1}
 {1}

SELECT sum(funnel_events(events, 2)) AS funnel_results
FROM (
 SELECT array_agg(event ORDER BY time) AS events
 FROM (
 (
 SELECT customer_id, user_id, 1 AS event, time
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1412319600000 AND 1412924400000 AND
 (data ->> 'action') = 'view_page' AND
 (data ->> 'path') = '/item_detail'
)
 UNION
 (
 SELECT customer_id, user_id, 2 AS event, time
 FROM events
 WHERE
 customer_id = 135 AND
 time BETWEEN 1412319600000 AND 1412924400000 AND
 (data ->> 'action') = 'click' AND
 (data ->> 'css_hierarchy') LIKE '%div.checkout_modal%a.btn' AND
 (data ->> 'target_text') = 'Confirm Order'
)
) t
 GROUP BY customer_id, user_id
) t

 -----------> {3, 1}

 ----------------> {1, 1, 2}
 {1, 1, 1, 1}
 {1}

UDFs For Advanced Analysis
• All analyses shard cleanly by (customer_id, user_id),

and every query is built from a sparse set of events.

• Simple meta-formula for a family of analysis queries:

1. Build up an array of relevant events for each user

2. Pass the array to a custom UDF

3. Join arbitrarily for more filtering, grouping, etc

Our PostgreSQL Wishlist

• Partial index creations using base indexes.

• Concurrent CREATE INDEX CONCURRENTLY calls.

• Ability to tell the query planner what we want.

Building A Real System
• We're sharding by user, not by time range. How do we

move shards, split shards, rehydrate new replicas, etc?

• Where does data live before it gets into the CitusDB

cluster?

• How do we handle ingestion spikes?

Building A Real System
• Use Kafka as a short-term commit log.

• Use PL/pgSQL to turn writes into idempotent, commutative
messages.

• Keep track of Kafka positions and replay data for cluster
operations.

Future Work
• Strong majority of our queries touch only the last 2

weeks of data – can we split out recent data onto nicer
hardware?

• Numerical analysis beyonds counts -- min, max,
averages, histograms.

• Richer analysis, path analysis, more behavioral
cohorting, data pivoting...

Questions?
Or, ask me on twitter: @danlovesproofs

